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Abstract

To successfully navigate in an uncertain world, one has to learn the relationship between

cues (e.g., symptoms) and an outcome (e.g., disease). During this learning, it is sometimes

possible to actively manipulate the cue values, allowing one to test hypotheses about this

relationship directly. Across two studies, we investigated how 5- to 7-year-olds select cue

configurations when learning cue-outcome relationships and how they are guided by

representations of the hypothesis space regarding these relationships. In our task, children

selected which monster pairs to see running in a race, allowing them to learn how two cues

(the color and shape of monsters) predicted the relative speed of the monsters;

subsequently, they made predictions about the speed of new monsters. Using

computational modeling, we compared several models in their ability to capture children’s

responses. We found that young children’s search was most consistent with a model that

assumed reliance on a hypothesis space represented in terms of the relative speed of

individual monsters. However, when memory aids were provided during search, 7-year-olds

were best described by a model that assumes reliance on a more efficient, high-level

representation that organizes the hypothesis space based on abstracted cue-outcome

relationships. Our results highlight the guiding role of hypothesis-space representations for

search during learning, suggest that young children already spontaneously abstract

hypothesis-space representations, and provide the first evidence for a shift between search

and test in terms of the hypothesis-space structures on which children rely when navigating

in an uncertain world.

Keywords: multiple-cue inference, active learning, hypothesis-space, representation
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How the hypothesis space is represented. Evidence from young children’s active search and

predictions in a multiple-cue inference task

Introduction

“Stick out your tongue and say aaaah. Have you been feeling tired or stressed lately?

Any headaches?” Doctors usually ask many such targeted questions about patients’

symptoms and run additional tests to gather the information they need to make a

diagnosis. Knowing which questions to ask or tests to run and being able to interpret

symptoms, answers, and results to identify what illness a patient is most likely to suffer

from is a highly specialized skill. However, it is, in principle, an ability that we all rely on

in much more mundane situations. Imagine you are attending your first school’s sack race.

Because you are the youngest racer, you get to choose whether to race against Caren or

Jason. You have seen a couple of races already: Mary, a very tall girl, won against Bob,

and Mike, also pretty tall, won against Lucy. So, you have learned that Mary is faster than

Bob, and that Mike is faster than Lucy. And that might be all you have learned. In this

case, you still would have no idea which opponent you are more likely to win against, and

observing 10 or 20 more races would not help much–unless you could see Caren and Jason

competing against each other, of course. However, you would have gathered more

information from those two races you observed if you had tried to understand what makes

people faster at this game. Why did Mary and Mike win? Maybe because they are so tall,

or because they had a lighter sack? Organizing your hypothesis in this way, that is,

identifying salient characteristics which may be related to the outcome, has implications for

how to search. In this example, the most information can be gathered by watching a tall

kid with a heavy sack race against a small kid with a thinner sack. This information might

help you choosing between Caren, who is way shorter than you but has an ultra

professional aerodynamic sack, or Jason, who’s much taller than you but has a thick black

leather sack. This example illustrates that the way we represent the set of hypotheses

under consideration, for example by organizing them in groups according to more abstract
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shared features or by only considering the individual hypotheses, drives our information

search and impacts our ability to predict the outcome. In turn, search choices and

predictions may indicate how the hypothesis space might have been represented.

In this paper, we explored how 5- to 7-year-olds search for information that would

enable them to make accurate predictions about an outcome (the winner of a race) based

on multiple cues (e.g., height and weight of the sack). In particular, we implemented for

the first time, to our knowledge, an active learning paradigm in which children could

search for information by selecting the cue configurations for which they wanted to observe

the outcome. Moreover, using computational modeling, we investigated what children’s

behavior revealed about their representation of the hypothesis space during both

exploration and prediction.

The Development of Information Search Across Childhood

The ability to search for information emerges at a very early age (Cook et al., 2011;

Legare et al., 2013; McCormack et al., 2016; Ruggeri et al., 2019). Preschoolers are more

likely to explore when they are presented with confounded evidence—that is, when they

are uncertain about the causal mechanism at work (Cook et al., 2011; Schulz and

Bonawitz, 2007)—or when they face evidence that violates their prior beliefs (e.g.,

Bonawitz et al., 2012), and infants already prefer to explore surprising events (Stahl and

Feigenson, 2015; Sim and Xu, 2017). However, the ability to search for information

efficiently is subject to considerable developmental changes. For example, despite being

able to select the most informative of two given questions already at age 5 (Ruggeri et al.,

2017), children do not start consistently implementing effective question-asking strategies

until age 10 (Mosher and Hornsby, 1966; Herwig, 1982; Ruggeri and Lombrozo, 2015;

Ruggeri et al., 2016; Ruggeri and Feufel, 2015). This is also supported by process-tracing

studies that examined children’s information search using information boards, where

participants have to look up information about different cues for a set of options (e.g., for a
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set of bikes, the price, number of gears, and color) to make a decision (e.g., which bike to

buy). These studies show consistent developmental improvements in search efficiency

between the ages of 7 and 14 years, with younger children searching more exhaustively and

in a less systematic manner than older children (Davidson, 1991a,b; Gregan-Paxton and

Roeder John, 1995, 1997; Howse et al., 2003).

It is currently unclear, however, what drives the observed developmental differences

in search efficiency. Previous studies suggest that older children are more efficient than

younger children because they are more systematic—in the sense that they are better able

to focus on the dimensions that are more important for making the decision (Davidson,

1991b; Betsch et al., 2014; Ruggeri and Katsikopoulos, 2013; Mata et al., 2011). Recent

research also suggests that one crucial source of developmental change in information

search efficiency lies in children’s stopping rules: Children are considerably more likely than

adults to continue their search for information beyond the point at which a decision can be

made (e.g., when a single hypothesis remains; Ruggeri et al., 2016). Another proposed

explanation for young children’s limited efficiency in information search is that they have

difficulty going beyond the object level, that is, they fail to spontaneously identify,

represent, and therefore reason with more abstract task structures. Consistent with this

idea, Ruggeri and Feufel (2015) found that scaffolding more abstract representations of the

hypotheses in the 20-questions game helped 7- and 10-year-olds ask more informative

questions. In this study, 7- and 10-year-old children as well as adults were presented with

20 cards, each presenting a word label (e.g., “dog” or “sheep”). Participants were randomly

assigned to one of two experimental conditions that differed in the level of the abstraction

of the label: a basic-level condition (e.g., “dog") or a subordinate-level condition (e.g.,

“Dalmatian”). Participants were more likely to ask effective questions, ones that targeted

the objects’ categories (e.g., is it a pet?) rather than individual objects, in the former

condition than in the latter. This suggests that providing more abstract labels facilitated a

shift away from reasoning based on individual objects when generating questions. The
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study showed that the ability to generate more abstract features for given objects (e.g., “a

dog is a mammal”) also improves between age 7 and 10 (see also Herwig, 1982).

These results suggest that developmental differences in the ability to represent

task-relevant information, and in particular the hypotheses under consideration, in an

abstract way may drive developmental differences in information search. Let’s go back to

the racing example presented above, with a slight twist, that bring us closer to our

experimental design: Suppose you have to order four monsters on a podium, from the

fastest to the slowest runner. If you could only think about the individual monsters, your

hypothesis space would consist of all their possible permutations, that is, all the possible

rank orders on the podium. We refer to this as a permutation-based hypothesis space. Even

if there were only 4 monsters, the hypothesis space would include 24 hypotheses about all

the possible rankings. With this representation of the problem, you would have to observe

at least 6 carefully selected races to narrow down the hypothesis space to the correct

podium rank. Moreover, you would have to memorize and integrate the results of all of the

observed races—a rather long, memory-intensive and therefore potentially error-prone

process.

However, if you were able to abstract some relevant features, for example their color

(blue or green) and shape (square or circle), you can organize the potential hypotheses by

abstracting the relationship between these two available cues and the outcome (cf. Einhorn

et al., 1979; Juslin et al., 2003a,b). Specifically, this representation of the hypothesis space,

that we refer to as cue–abstraction, contains only 8 hypotheses (see Table 1). In this case,

finding the correct podium order would take only three information search steps: Find out

which color and shape makes the monsters faster (the direction of each cue), and find out

which cue is more important for determining a monster’s speed (the cue order).

Importantly, the way the hypothesis space is organized can affect the way information is

generalized to situations that have never been encountered before, as only cue abstraction

allows to learn relationships that can be reliably extended to novel sets of objects (cf.
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Hypothesis Color Direction Shape Direction Cue Order

1 B>G S>C CO>SH

2 B>G S>C SH>CO

3 B>G C>S CO>SH

4 B>G C>S SH>CO

5 G>B S>C CO>SH

6 G>B S>C SH>CO

7 G>B C>S CO>SH

8 G>B C>S SH>CO

Table 1

Structure of the cue-abstraction model.

B = Blue; G = Green; S = Square; C = Circle; CO = Color; SH = Shape

Pachur and Olsson, 2012; Pachur and Trippas, 2019).

In a study that compared children and young adults in the context of a multiple-cue

inference task, von Helversen et al. (2010) found that whereas the majority of adults were

best described by a cue-abstraction strategy (see also Juslin et al., 2003a,b; Trippas and

Pachur, 2019), 9-11 year old children were more likely to rely on a similarity-based

processes for prediction, that is, they made inferences based on how much a new object

resembles previously encountered ones. In addition, reliance on cue abstraction was

associated with better performance for adults but not for children, suggesting that even

those children who approached the task with the appropriate strategy struggled to

implement it correctly (cf. Pachur and Olsson, 2012). Cue abstraction may be especially

sensitive to developmental shifts in attentional control and working memory, as it requires

one to maintain and reason about multiple cue-outcome relations. Thus, even older

children may rely on different representations depending on the demands of the task.
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Overview of the Studies

In this article, we report two experimental studies in which we investigated the early

emergence of the ability to actively learn cue-outcome relationships in order to make

accurate predictions about new objects. We implemented an active search paradigm in

which 5- to 7-year-old children were presented with four monsters (see top left panel in 1)

and tasked to find out which kinds of monsters were faster. In the search phase, they could

select which monster pairs to see running in a race in order to learn how two cues (color

and shape) predict the monsters’ relative speed. At each step, children should select to

observe the race they think would be the most informative. In other words, children should

pick the pair with the highest expected information gain (EIG) at each step of the search.

EIG quantifies the usefulness of a query based on how much new information it is expected

to provide, that is, how many hypotheses will be ruled out after seeing the outcome of that

query, and with what likelihood. Formally, EIG expresses the reduction of entropy, or the

uncertainty as to which hypothesis is correct, upon making a query and observing its

outcome (Shannon, 1948). Crucially, EIG depends on how the hypothesis space is

structured. Indeed, as illustrated with the previous example, different representations of

the hypothesis space suggest that different queries are maximally informative. In the test

phase of the task, children were asked to predict the winner of races between novel

monsters and to construct a “podium" in which they ranked the four monsters seen during

learning. The way the hypothesis space is represented also affects the ability to identify the

correct ranking from the evidence gathered during search, as well as to generalize what was

learned to unfamiliar monsters.

In Study 1, we evaluated whether and to what extent 5- and 6-year-olds’ search

selections and predictions indicated that they relied on a cue-abstraction representation of

the hypothesis space, in which hypotheses are organized by abstracting the relationships

between cues and the outcome, in this case encoding both the cue direction and order (i.e.,

which color is faster, which shape is faster, and whether color or shape is more important
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for predicting a monster’s speed; see Table 1). This representation of the hypothesis space

requires the ability to abstract the relationship between cues and the outcome from the

pairs of monsters encountered; this might be challenging for younger children, who have

been shown to struggle with such abstractions (Herwig, 1982; Ruggeri and Feufel, 2015).

Abstracting the cue order (i.e., whether color or shape was more important for determining

relative speed), a second-order cue, may be especially difficult for them. We therefore

generally expected that 5-year-olds would be less likely than 6-year-olds to make the most

informative selections and accurate generalizations as predicted from a cue-abstraction

representation of the hypothesis space. In Study 2, we extended our developmental analysis

to include a sample of 7-year-olds, and additionally considered the permutation-based

representation of the hypothesis space, in which hypotheses correspond to a specific order

of the four monsters (see Table ??). This alternative representation is similar to what is

referred to as exemplar processing (Juslin et al., 2003a,b; Pachur and Trippas, 2019). In

addition, we used computational modeling of children’s search selections and predictions in

order to identify which representation of the hypothesis space they were more likely to have

relied on in each phase of the task.

Study 1

Method

Participants. Participants were 51 5- to 6-year-olds (29 female; M = 72.40

months, SD = 6.64 months), recruited and tested at museums and primary schools in the

East Bay of the San Francisco area. An additional 17 participants were excluded due to

equipment malfunction (n = 14), withdrawal of consent (n = 1), lack of fluency in English

(n = 1), or failure to complete the study (n = 1). Ethical approval was obtained by the

Institutional Review Board (IRB) of [blind for review] (protocol: [blind for review]), and

parents gave informed consent for their children’s participation before the experiment. The

children were native [blind for review]or fluent in [blind for review], were predominantly
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white and came from various social classes.

Design and procedure. The task was presented to the children on a laptop

computer and consisted of an active learning and a test phase. The task lasted

approximately 10 min.

Active learning phase. Children were presented with four monsters: a green

square, a green round, a blue square, and a blue round monster (Figure 1). The speed of

each monster was determined by its features (i.e., color and shape): The blue monsters

were faster than the green ones, the square ones faster than the round ones, and color was

the more important cue for predicting monsters’ relative speed. The monster order from

the fastest to the slowest was therefore: blue square, blue round, green square, green round.

Figure 1 . Experimental procedure in Study 1.

Participants were first presented with a short video clip showing the blue square

monster winning a race against the green round monster. Verbal instructions prompted

participants to pay particular attention to the monsters’ color and shape. The active

learning phase was carried out in three blocks. In each block, children were presented with



HYPOTHESIS-SPACE REPRESENTATION 12

Figure 2 . Pairs of monsters presented in the three blocks of the active learning phase of

Study 1. The winning monster for each pair is marked with a crown.

two monster pairs on the screen (Figure 1). Children selected which of the two monster

pairs they wanted to see racing to find out which kinds of monsters were faster

(Figures 1, 2). They then saw a video of the selected monsters racing and observed the

outcome of each race. Monster pairs that participants had already seen racing appeared on

the right side of the screen, with the winner marked with a crown (Figure 1). These

memory aids were provided during the entire learning phase. The learning blocks were

designed such that according to the cue-abstraction representation of the hypothesis space,

one monster pair provided new information about the cue-outcome relationships, whereas

the other provided no new information according (EIG = 0; e.g., selecting a blue square

monster and a blue round monster after having seen a green square and green round

monster racing, which only confirms that square monsters are faster, without providing any

new information).

If, in any block, a child selected the monster pair that did not provide any

information (n.b., EIG = 0 according to the cue-abstraction representation of the

hypothesis space), the same block was presented again. This ensured that childen had

collected all the relevant information they would need, according to the cue-abstraction
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representation of the hypothesis space, to make the predictions presented in the test phase.

Because of this, children who selected uninformative pairs were eventually presented with

more learning blocks in total, whereas children who always selected the most informative

pair were only presented with three learning blocks.

Test phase. The test phase consisted of a generalization task and a podium task,

designed to assess how well children had learned the cue-outcome relationships.

In the generalization task, children were shown pairs of unfamiliar monsters and were

asked to predict which monster would win the race (Figure 1). Memory aids from the

learning phase remained visible on the right side of the screen. The first two trials in the

generalization task presented monsters with either known colors but new shapes (blue and

green triangles) or known shapes and a new color (a red circle and red square). These two

trials aimed to test whether children had learned the direction of the color and shape cues,

that is, which color and which shape indicated a higher speed. The order of these trials was

counterbalanced across participants. The third trial presented a pair in which one monster

had the faster shape but the slower color (a green square) and the other had the slower

shape but the faster color (a blue round monster; see Figure 1). This trial tested whether

children had learned the order of the cues, that is, that color was more important than

shape for predicting the winner of a race.

In the podium task, children were presented with the four monsters from the learning

phase and were instructed to rank them from the fastest to the slowest by positioning them

on a four-step podium. (Figure 1).

Results

Active learning phase. First of all, we found very similar learning patterns across

age groups, with comparable mean number of learning blocks (M5years = 4.50, SD = 0.81;

M6years = 4.16, SD = 0.85; p = .15) and cue-abstraction-EIG (i.e., EIG calculated

according to the cue-abstraction representation of the hypothesis space; M5years = 0.58,
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SD = 0.22; M6years = 0.68, SD = 0.24; p = .92). Second, we simulated 51

cue-abstraction-optimal participants, who always selected the monster pair that was

informative according to the cue-abstraction representation of the hypothesis space, and 51

participants who selected one of the two monster pairs at random, but never selected the

uninformative pair twice, as none of the children in our sample did so. We then compared

our sample to the simulated participants, and found that children’s selections were less

informative than those generated by cue-abstraction-optimal participants

(t(50) = −11.210, p < .001). This was true for both 5- and 6-year-olds separately

(p < .001). We also found that their selections were more informative than those of the

simulated random participants (t(50) = 3.30, p = .002). However, this difference was

mostly driven by 6-year-olds (t(24) = 2.86, p = .009), as the cue-abstraction-EIG of

5-year-olds did not statistically differ from random (p = .094).

Test phase. If children had a cue-abstraction representation of the hypothesis

space, at the end of the active learning phase they should have known that square monsters

are faster than round monsters, that blue monsters are faster than green ones, and that

color is more important than shape to determine speed. Note that only information

encoded at this level of abstraction is generalizable to new monsters. We therefore

calculated the percentage of generalization trials in which children selected the correct

monster as suggested by the cue-abstraction representation, and therefore encoding, of the

hypothesis space (i.e., the square red monster over the round red monster, the blue monster

over the green monster, and the round blue monster over the square green monster).

Overall, the mean accuracy in the generalization task slightly increased with age

(χ2(3) = 7.61, p = .055). In particular, note that 5-year-olds were at chance in the

generalization trial assessing their learning of cue-order (see Figure 3). However, mean

accuracy was overall significantly above chance for both age groups (M5years = 67.97%,

SD = 30.52, exact binomial: p < .001; M6years = 78.67%, SD = 25.24, exact binomial:

p < .001). A linear regression with continuous age and children’s cue-abstraction-EIG as



HYPOTHESIS-SPACE REPRESENTATION 15

predictors confirmed the age effect (p = .012), but showed no effect of the selections during

search (cue-abstraction-EIG) on generalization (p = .729).

Figure 3 . Test phase performance in Study 1, scored according to the predictions of a

cue-abstraction representation of the hypothesis space. Left: Proportion of participants

who chose the correct monster on each generalization trial, by age group. Right:

Proportion of children who ranked all four monsters correctly on the podium test. With 24

possible rankings, chance performance is equal to .042.

If children had a cue-abstraction representation of the hypothesis space, at the end of

the active learning phase they would have narrowed down the hypotheses to one,

determining a unique rank order of the monsters. Podium accuracy was therefore scored

according to whether children assembled the correct podium compatible with a

cue-abstraction representation (1=correct, 0=incorrect). Accuracy in the podium task was

also above chance for both age groups (Figure 3), with 15.38% of the 5-year-olds

(two-tailed binomial test: p = .02) and 32% of the 6-year-olds (two-tailed binomial test:

p < .001) assembling the correct podium. A binary logistic regression with continuous age

and children’s cue-abstraction-EIG as predictors suggested a small age effect (OR = 3.57,
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[.936, 13.62]), but showed no effect of the learning pattern (cue-abstraction-EIG) on

generalization (OR = 2.87, [.162, 50.97]).

Discussion of Study 1

The results of Study 1 suggest that there might be a difference in how the hypothesis

space is represented during information search versus prediction. In particular, the analysis

of children’s selections provides some evidence that 6-, but not 5-year-olds have organized

their hypothesis space by abstracting the cue-outcome relationship. Indeed, 5-year-olds’

selections did not differ from those of random participants. However, our results of the

generalization and podium tasks showed that, at least to a certain extent, both age groups

differ from chance, independently of being more or less driven by a cue-abstraction

representation of the hypothesis space during search, with a slight age improvement. This

suggests that all children organized the information collected during the active learning

phase according to a cue-abstraction representation of the hypothesis space. In other

words, we could speculate that even 5-year-olds, who did not seem to rely on a

cue-abstraction representation of the hypothesis space when making selections, nevertheless

reasoned about the information collected by abstracting the cue-outcome relationships at

test, possibly because otherwise they would have nothing to inform their predictions. Note

that this reorganization was facilitated by the memory aids, presenting all the information

observed during the learning phase.

Study 2

Because in Study 1 we designed the active learning phase to encourage a

cue-abstraction representation of the hypothesis space, our results may not reflect how

young children spontaneously approach a multiple-cue inference task. We address this

limitation in Study 2, by leaving children free to create their own monster pairs and observe

as many races as they wanted. In particular, this allows us to analyze whether children’s

selections and predictions are better described and compatible with a cue-abstraction or a
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permutation-based representation of the hypothesis space. The two different representation

of the hypothesis space make different predictions as to which monster pairs are most

informative to observe and therefore should be selected, and also make different predictions

for the test phase, because the collected information is encoded differently and thus

narrows down the hypothesis space in different ways. For example, knowing that the green

square monster is faster than the green round monster will leave open 4 out of 8

hypotheses in the cue-abstraction hypothesis space, and 12 out of 24 hypotheses in the

permutation-based hypothesis space. In this case, subsequently observing the blue square

monster and the blue round monster racing would not be informative at all in the

cue-abstraction space, because it does not rule out any of the 4 remaining hypotheses.

However, the same observation would rule out 6 out of 12 remaining hypotheses in the

permutation-based hypothesis space, making it the most informative action available.

An additional concern in Study 1 was that rather than focusing on the relevant cues

(color and shape) to assess the relative speed of the monsters, the children could have used

other visual cues such as timing or the distance between the monsters before they reached

the finish line. To address this, we obscured the final half of the race track with trees

(Figure 1). Furthermore, to better capture the developmental trajectory, we extended our

age range to include 7-year-olds. Finally, we introduced a memory load manipulation which

determined whether children were provided with memory aids (a record of the previous

selections and outcomes). This would help understanding the impact of memory load on

children’s hypothesis space representation.

Based on the results of Study 1, we generally expected that older children would be

more likely than younger children to rely on a cue-abstraction representation of the

hypothesis space during search. We also hypothesized that children will be more likely to

represent the hypothesis space in a cue-abstraction fashion when assigned to the high

memory load condition—where encoding and updating a smaller hypothesis space might be

particularly beneficial. Lastly, we expected that all children would be more likely to rely on
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a cue-abstraction representation of the hypothesis space during the test phase, compared to

the active learning phase, as emerged in Study 1.

Method

Participants. Participants were sixty-four 5-year-olds (33 female; M = 65.51

months, SD = 3.48 months), sixty-seven 6-year-olds (33 female; M = 78.25 months,

SD = 3.55 months), and sixty-eight 7-year-olds (33 female; M = 89.99 months, SD = 3.52

months). A further 3 participants were excluded because of withdrawal of consent, and 2

because of technical error. Children were recruited and tested in museums in [blind for

review]. They were [blind for review] or fluent in [blind for review], were predominantly

white and came from various social classes. Ethics approval was obtained by the IRB of

the [blind for review] (protocol: [blind for review]) and parents gave informed consent for

their children to participate before the start of the study.

Design and procedure. The experiment was carried out on a tablet. The

paradigm was identical to the one used in Study 1, with the following modifications: First,

children were presented with the four monsters and could freely select the learning pairs

they wanted to see racing, instead of having to choose between pre-selected pairs. We

incentivized children to search efficiently by initially providing them with 10 stickers, of

which they had to “pay” one every time they wanted to see a monster pair racing. They

were told that they could keep the stickers left over at the end of the game as a prize.

Children had to observe at least three monster pairs racing before moving on to the test

phase, but could see up to 10 monster races, using all the stickers they were given. After

the third trial, they were asked after each race whether they wanted to see another monster

pair racing, or whether they knew what kinds of monsters were faster and therefore were

ready to move on to the test phase. Second, the final half of the racetrack was obscured by

trees (Figure 1), to prevent children from basing their predictions on other visual cues other

than color or shape, such as the distance between the monsters before reaching the finish
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line. Third, we manipulated the correct monster order between participants. Note that all

the implemented orderings were potentially consistent with a cue-abstraction representation

of hte hypothesis space, that is, abstraction of cues was possible. Fourth, we manipulated

memory load by randomly assigning children to one of two conditions: Children in the high

load condition did not receive any memory aids, whereas children in the low load condition

received memory aids, just like in Study 1 (see Figure 1). The test phase remained

unchanged, except for the third generalization pair, which was slightly altered to make it

more distinct from the pairs encountered during the learning phase (Figure 1).

Results

Active learning phase. Aggregated across age groups and conditions, children

observed an average of 3.29 (SD = 0.74) races before moving on to the test phase. The

number of learning trials did not differ as a function of continuous age (IR = 0.97,

[0.89, 1.05], p = .44) or memory load (IR = 1.04, [0.89, 1.21], p = .64).

We calculated the EIG of each child’s selections according to both the cue-abstraction

and the permutation-based representations of the hypothesis space. Overall, the average

EIG of children’s selections was lower when calculated according to the the cue-abstraction

compared to the permutation-based representation of the hypothesis space (see Table 2),

suggesting that children’s search was generally better captured by assuming a

permutation-based representation of the hypothesis space. This result is supported by a

latent mixture-models analysis presented below.

A linear regression of cue-abstraction-EIG with continuous age, memory load, and

their interaction as predictors showed that it increased with age (β = 0.10, p < .001) and

low memory load (β = 0.59, p = .003). There was also a significant Age × Memory load

interaction (β = −0.88, p = .004; F (3, 196) = 7.597, p < .001; R2 = .09), indicating that

the effect of memory load on mean cue-abstraction-EIG decreased with age. A linear

regression of permutation-based-EIG also showed a main effect of age (β = 0.04, p < .001)
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Study 2

High load Low load

Cue-abstraction Permutation Cue-abstraction Permutation

5-year-olds .39 (.15) .56 (.12) .45 (.16) .59 (.10)

6-year-olds .48 (.12) .62 (.07) .48 (.13) .61 (.10)

7-year-olds .53 (.12) .62 (.09) .48 (.11) .64 (.07)

Table 2

Mean EIG (and SD) of selections calculated according to the cue-abstraction

(cue-abstraction-EIG) and permutation-based (Permutation-based-EIG) representations of

the hypothesis space, displayed by age group and condition.

but not of memory load (β = 0.02, p = .32). Adding an Age × Memory load interaction

did not significantly improve model fit (χ2(1) = 0.016, p = .32).

Children often stopped the search before they had narrowed down the hypothesis

space to a single hypothesis, that is, when there was still information to be gained

(according to any of the representations of the hypothesis space considered). Although the

prevalence of such early stopping declined with age (5-year-olds: 67.69%; 6-year-olds:

67.16%; 7-year-olds: 54.41%), a logistic regression showed that these differences were not

significant (OR = 0.74, [0.53, 1.04], p = .081) and that rates of early stopping were also

unaffected by condition (OR = 1.01, [0.56, 1.80], p = .981). This indicates that children did

not markedly differ in their ability to search exhaustively.

Test phase. As mentioned in the results section of Study 1, children’s predictions

in the generalization trials would be much more strongly supported if they had encoded the

information collected in the active learning phase according to a cue-abstraction, compared

to a permutation-based representation of the hypothesis space. Aggregating across

conditions, performance in the generalization task was above chance only for 6- and

7-year-olds (M5years = 57%, SD = 32, two-tailed binomial test: p = .06; M6years = 69%,
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SD = 28, p < .001; M7years = 76%, SD = 25, p < .001). A binary logistic regression

showed that the probability of making a prediction compatible with a cue-abstraction

organization of the hypothesis space increased significantly with age (Figure 4; OR = 1.47,

[1.19, 1.82]), but there was no significant effect of memory load (OR = 1.28, [0.89, 1.84]). A

higher number of learning trials was negatively associated with the probability of giving a

correct response (OR = 0.76, [0.60, 0.96]).

Differently from Study 1, we found that a higher cue-abstraction-EIG during search

increased the probability of giving a correct response (OR = 5.13, [1.48, 17.75]) in the

generalization trials. As expected, the EIG achieved under the permutation-based

hypothesis space was unrelated to on the probability of giving a correct response

(OR = 0.20, [0.03, 1.24]). This suggest that those children who were already searching

guided by a cue-abstraction representation of the hypothesis space were also more likely to

rely on this representation during the generalization trials.

In the podium task, the proportion of children who indicated the correct composition

of the podium increased with age and was above chance at all ages (Figure 4): Overall,

18.46% of 5-year-olds, 16.42% of 6-year-olds, and 36.76% of 7-year-olds identified the

correct podium. We used logistic regression to assess to what extent age and memory load

condition were related to performance in the podium task. We also tested a regression

model that included an Age × Condition interaction, but this did not significantly improve

model fit (χ2(1) = 1.41, p = .24). Adding mean EIG achieved during learning according to

both hypothesis-space models and the number of learning trials as predictors also failed to

improve model fit (χ2(3) = 2.073, p = .55). The probability of assembling a correct podium

increased significantly with age (OR = 1.71, 95% CI [1.15, 2.54]) and in the low load

condition (OR = 2.02, 95% CI [1.02, 4.00]).

Mixture-model comparison across active learning and test phases. The

behavioral results suggest that children relied on different representations of the hypothesis

space at different points in the task, in that selections during search were more consistent
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Figure 4 . Test performance in Study 2, scored according to the predictions of a

cue-abstraction representation of the hypothesis space. Left: Proportion of participants

who responded correctly in the generalization task for each trial type (vertical panels) in

high and low memory load (horizontal panels). Right: Proportion of participants who got

the podium correct in each condition.

with the permutation-based hypothesis space, whereas performance during the test showed

evidence of cue abstraction, particularly among older chidren. To directly compare reliance

on cue-abstraction versus a permutation-based hypothesis spaces during each phase, we

modeled children’s selections and predictions using a hierarchical Bayesian latent mixture

model (Bramley et al., 2015; Bartlema et al., 2014) (see Supplementary Materials for full

details). The mixture model compared three candidate strategies by estimating their

probability of having generated participants’ choices in each phase: a random strategy

(RAND) that corresponded to random selection during the learning phase and guessing in

the test phase; the permutation-based strategy (PERM); and the cue-abstraction strategy

(CA). Both the PERM and CA strategies predict that selections during the active learning

phase are driven by EIG (as calculated using the corresponding hypothesis space; see

Supplementary Materials S1) and the resulting outcomes are used to rule out hypotheses
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that are inconsistent with that evidence. The set of hypotheses which remain at the end of

the search phase are then used to predict responses on the generalization and podium tests.

The estimated mixture probabilities (θ) indicate the likelihood of each strategy within each

group based on how well each strategy fits participants’ choices.

This approach complements the behavioral analyses in a number of ways. First, it

provides an integrative account of strategy use during the test phase, as all of an

individual’s responses (generalization trials and podium) are modeled as arising from a

common underlying representation of the hypothesis space. Second, it allows us to directly

weigh the evidence for each strategy when taking into account the information collected by

each individual during learning. This is particularly important because participants

selected different sets of observations during the active learning phase, which in turn affects

the expected performance on test trials. For example, the PERM and CA strategies both

predict low test accuracy among participants who make uninformative selections and end

the learning phase without narrowing down either hypothesis space. Similarly, a small

number of high-EIG observations may be enough to identify the correct hypothesis under

the CA model, but still leave uncertainty under the PERM model. Examining the

estimated mixture probabilities therefore provides a clearer indication of a group’s reliance

on each strategy, and therefore on the different hypothesis space representations, given all

observed behaviors in the active learning and the test phase.

Figure 5 shows the posterior means and 95% highest posterior density intervals for

the mixture probabilities θ in the learning phase (top row) and the test phase (bottom

row). During the active learning phase, echoing the EIG results presented above, all

children’s selections were better captured by the PERM strategy (see Table S1 for pairwise

differences between mixture probabilities), with one exception: For 5-year-olds in the high

load condition, the RAND strategy had the highest posterior probability. This suggests

that the task demands may have been too high for the youngest age group to implement

any systematic search strategy.
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In the test phase, which considers together the responses to the generalization and

the podium tests, strategy use was less consistent for all age groups (see Table S1 for

pairwise comparisons between strategies). The RAND strategy best captured 5-year-olds’

predictions in both memory load conditions, as well as 6- and 7-year-olds’ predictions in

the high load condition. In the low load condition, the PERM strategy was most

prominent among for the 6-year-olds, whereas the CA strategy best-captured test

performance among 7-year-olds.

Active learning phase

Test phase

Figure 5 . Mixture probabilities of each strategy in Study 2 for the learning phase (top)

and test phase (bottom). Error bars represent 95% highest posterior density intervals.
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Discussion of Study 2

In Study 2 we compared two possible representations of the hypothesis

space—cue-abstraction and permutation-based—in their ability to capture children’s

selections and predictions in an active learning multiple-cue inference task. We analyzed

children’s behavior to find evidence for them relying on one or the other when selecting

which information to observe and making predictions. We also considered a completely

unsystematic strategy that would result in a random selection during search and guessing

at test.

The results of Study 2 are in line with those of Study 1, in that they suggest there is

a difference in how 6- and 7-year-olds represented the hypothesis space during the active

selection versus the test phases. In particular, both the behavioral and computational

analyses of older children’s selections provide evidence that they are more likely to rely on

a permutation-based representation of the hypothesis space during active learning.

However, their predictions during the test phase indicate a shift in how the hypothesis

space is represented. On the one hand, in the test phase, 6- and 7-year-olds in the high

memory load condition were now better fit by a random strategy. This suggests that, even

when the search was guided by a permutation-based representation of the hypothesis space,

integrating the information collected and making informed predictions without memory

aids was too challenging. On the other hand, in the low memory load condition, 6-year-olds

were still better fit by the permutation-based representation of the hypothesis space, while

the predictions of 7-year-olds were better captured by a strategy assuming a

cue-abstraction representation of the hypothesis space. In general, 5-year-olds were better

captured by a random strategy, indicating that this version of the task might have been too

challenging for them even with the benefit of memory aids.

The comparison between the results of Study 1 and 2 also suggest that a high

memory load—the absence of the memory aids offered in Study 1—prevents children from

being able to abstract the cue-outcome relationship, and in the case of 5-year-olds, to
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entertain either systematic representation of the hypothesis space. Children in low memory

load condition, however, showed a similar developmental trend towards an improved ability

to represent the hypothesis space in a cue-abstraction fashion as those in the sample of

Study 1, at least in the test phase. It is difficult to compare the results of the active

learning phase across the two studies though, as the forced-choice design in Study 1

strongly encouraged a cue-abstraction representation of the hypothesis space and therefore

may not reflect how young children spontaneously approach a multiple-cue inference task.

Additionally, in Study 1 children were forced to continue training until they had seen

all of the informative races (according to the cue-abstraction representation of the

hypothesis space), so that they had all the information needed for abstracting the

cue-outcome relationships. Since many children in Study 2 did not search efficiently it is

also possible that children did not collect enough information necessary for cue abstraction.

This difficulty in generating versus selecting the most informative actions is in line with

developmental findings from question-asking research (Ruggeri et al., 2017, 2016; Ruggeri

and Feufel, 2015). This work shows that children younger than 10 years of age have a hard

time generating the most informative questions from scratch, although they can already

select the most informative questions at age 5.

Although the memory load manipulation did not affect children’s search patterns or

generalization performance, low memory load was associated with higher accuracy in the

podium task (particularly for the 7-year-olds). This indicates that the increased memory

load made it more difficult to learn the monster orders seen during learning, but did not

prevent older children from abstracting the cue-outcome relationships and make

generalizations to new objects. However, all children performed above chance level in the

podium task, suggesting that the memory load was not so high as to make learning

impossible (even for 5-year-olds). Furthermore, comparing the results of the computational

modeling analyses for the 5-year-olds’ between conditions suggests that implementing a

systematic (i.e., non-random) search strategy may incur lower cognitive load than using the
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information gathered during search to make inferences.

Conclusion

We presented two studies in which we explored how 5- to 7-year-olds actively search

for information to make accurate predictions based on multiple cues. Moreover, using

computational modeling, we investigated what children’s search patterns and predictions

reveal about their representation of the hypothesis space.

The results of Study 1 suggest that 5-year-olds are already able to abstract

cue-outcomes relationships and generalize to new exemplars if enough scaffolding is given

during the active learning phase. This is a much younger age than typically assumed.

Indeed, previous work suggested that children have difficulty identifying relevant cues

(Montanelli, 1972; Betsch et al., 2014; Davidson, 1991b) and reasoning about hypotheses in

an abstract, hierarchical manner until late childhood (i.e., around age 10; Ruggeri and

Feufel, 2015). However, Study 2 showed that even older children struggled to do so without

scaffolding, echoing results from studies of question-asking (Ruggeri et al., 2017; Ruggeri

and Feufel, 2015). Crucially, both studies provided for the first time evidence that children

can switch between different representations of the hypothesis space: In some cases, any

organization of the hypothesis space that seems to have driven search can dissolve at test,

especially when the memory demands are too heavy, with children performing at random

at test. In other cases, children seem to be able to spontaneously reorganize the hypothesis

space after the search phase, to encode the information collected by abstracting the

cue-outcome relationship, in this way finding support for more accurate predictions. For

example, although during the learning phase the 5-year-olds in Study 1 and the 7-year-olds

in Study 2 seemed to rely on a permutation-based representation of the hypothesis space

(when memory aids were provided), they were able to reorganize and shift to a

cue-abstraction representation during the test phase (for a related switch in reliance on cue

abstraction and exemplar processing between different judgment tasks in adults, see
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Pachur and Olsson, 2012; Trippas and Pachur, 2019).

More generally, considering how children may represent the hypothesis space at

different ages and at different stages of the learning process could help explain

inconsistencies in existing findings. For instance, it is well-established that the efficiency of

children’s questions increases dramatically between the ages of 5 and 10, with particularly

large improvements from age seven (e.g., Ruggeri et al., 2016; Herwig, 1982; Mosher and

Hornsby, 1966). However, the factors driving these changes remain poorly understood.

While it is obvious that the maturation of children’s verbal skills and executive functions

are important contributors, another intriguing possibility is that the emergence of the

ability to represent relevant information in a hierarchical manner, together with the

flexibility to reorganize the hypothesis space in the course of a task to more effectively

guide information search and support prediction, may also be crucial.

Similarly, achieving a better understanding of how children’s search strategies relate

to their representation of the hypothesis space can help explain why interventions aimed at

improving children’s learning strategies do not always work as intended. For example,

attempts to improve the efficiency of children’s questions (e.g., Denney and Turner, 1979;

Denney, 1972; Courage, 1989) and use of unconfounded experiments in causal learning

(e.g., Dean and Kuhn, 2007; Chase and Klahr, 2017) have met with limited success. If

students have misunderstandings about the relevant variables or cues, which should be

reflected in their hypothesis-space structure, interventions which do not address these

misconceptions are unlikely to be effective.

We note that our candidate notions of the hypothesis space were based on research

on how adults solve multiple-cue inference tasks (e.g., Juslin et al., 2003a,b; Pachur and

Olsson, 2012). It would be beneficial for future research to determine whether the

permutation-based and cue-abstraction representations of the hypothesis spaces we have

focused on are indeed the most likely representations used by young children in

multiple-cue inference tasks. As hinted at by Study 2, children may use other
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hypothesis-space structures that we did not consider, such as a simpler variant of the

cue-abstraction hypothesis space in which only the cue directions are encoded, or a

completely different representation of the hypothesis space that requires less cognitive

capacity to update and maintain.
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Supplementary Materials

S1. Bayesian Models

We modeled behavior in the task as Bayesian belief updating with respect to a

hypothesis space H. In the PERM model, H was comprised of 24 possible orderings of the

four monsters shown in Figure 1. In the CA strategy, H was comprised of 8 possible

hierarchical rules involving the two cues (color and shape).

The four monsters were BS = (blue, square), BC = (blue, circle),

GS = (green, square), and GC = (green, circle). On each trial of the learning phase a

“race" X was observed between two monsters, with a total of six possible unique races.

Each hypothesis h ∈ H specifies the deterministic likelihood of observing a outcome of a

race between two monsters, p(winner(x) = m|h) for m ∈ X, based on their relative rank

(PERM model) or the order and direction of the two cues (CA strategy). On trial t, the

learner has observed a set of races D and their joint likelihood under a hypothesis is

p(D|h). The posterior distribution is given by Bayes rule,

p(h|D) = p(D|h)p(h)∑
h′∈H p(D|h′)p(h′) , (1)

where the prior p(h) is assumed to be uniform over the hypothesis space. The probability of

a new race resulting in the outcome winner(x) is then given by the predictive distribution

p(winner(x) = m|D) =
∑
h∈H

p(winner(x) = m|h)p(h|D). (2)

Selections during the active learning phase. Selections were modeled using

stepwise expected information gain (EIG), which is the expected reduction in Shannon

entropy measured over the posterior distribution as a result of observing the outcome of a

race. Shannon entropy is given by

H(D) = −
∑
h∈H

p(h|D) log p(h|D), (3)
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where D is the set of observations thus far. Entropy is maximized when all hypotheses

have equal probability according to the posterior distribution and is equal to zero when one

hypothesis has p(h|D) = 1. The value of selecting test X is the expected decrease in

entropy resulting from each outcome of the test, weighted by its probability of occurring,

EIG(X) =
∑

m∈X

p(winner(X) = m|D) [H(D)−H((winner(X) = m),D)]. (4)

Generalization test. There were three trials in the generalization task in which

the participant predicted the winner of a race between monsters that were not seen during

the learning phase. For the cue-abstraction hypothesis space, the likelihood of each

outcome was simply based on the cue order on the known dimension. For example, in the

Shape trial participants predicted the outcome of a race between a red square (RS) and red

circle (RC). The probability p(RS > RC) was determined by the cue direction for shape

under each hypothesis.

For the permutation-based hypothesis space, predictions were based on the relative

ranking of monsters that were matched on the feature dimension with an unfamiliar value.

For example, in the Shape trial, the probability p(RS > RC) was the proportion of races

between monsters of the same color in which the square was higher ranked than the circle.

If a given hypothesis specified that a square was faster than a circle for both values of the

color dimension (i.e., BS > BC and GS > GC), the probability of a red square being

faster than a red circle was 1. In contrast to the CA strategy, under the PERM strategy it

was possible to have reversed orderings (e.g., the square being faster when the shapes were

blue, but slower when the shapes were green, as in the ordering BS > BC > GC > GS)

which would lead to more uncertainty about the outcome of the novel generalization pair.

Podium test. In the podium task, the participant is asked to identify the correct

ordering of the four monsters seen during the learning phase. Under the Bayesian model,

the probability of each response is simply the posterior probability of the corresponding

hypothesis.
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S2. Latent Mixture Modeling in Study 2

We used hierarchical Bayesian latent mixture modeling to estimate the relative

probabilities of cue-abstraction and permutation-based reasoning during the learning and

test phases. Performance in each phase was modeled as a mixture of three strategies: a

random strategy (RAND) that corresponded to random search during learning and guessing

at test; the permutation-based model (PERM); and the cue-abstraction model (CA).

The model specifications are shown in Figure S1 for each phase. There were six

groups in Study 2 (3 age groups × 2 conditions). The probability of each strategy in group

k was denoted by the mixture probability θk, with each strategy assigned an equal prior

probability. The mixture probabilities determine the probability of an individual adopting

a particular strategy, where the chosen strategy for participant i is denoted by zi. A value

of zi = 0 corresponds to the RAND strategy, under which all search and test choices have

equal probability. If an individual adopts the PERM (zi = 1) or CA (zi = 2) strategies, the

corresponding hypothesis space was used to evaluate the likelihood of their selections

(learning phase) or test responses (test phase), based on the Bayesian updating model

described in Section S1. Choices in each phase were modeled using softmax functions with

group-specific inverse-temperature parameters λk (see below for details of each phase).

Inverse-temperature parameters were assigned a prior distribution of Gamma(α, β), where

α and β were hyperparameters that were common to all groups.

Learning phase. On each trial in the learning phase participants could select one

of six possible observations (pairwise match-ups of monsters). Under the random strategy,

all six observations were equally likely on every trial. Under the PERM and CA strategies,

the probability ρi,t of choosing observation i on trial t was modeled with a softmax choice

function over the EIG of all possible observations on that trial. The strategy adopted by an

individual determined whether EIG was calculated according to the PERM or CA strategy.

Test phase. During the test phase, each participant made four responses: three

generalization responses (shape, color, and order) and one podium response. For the
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Figure S1 . Plate diagrams for hierarchical mixture models in the learning phase (A) and

test phase (B) for Study 2.

random strategy, all choices were equally likely. For the PERM and CA strategies, the

probability of possible responses were based on the respective hypothesis space and the

evidence an individual observed during the learning phase. Choices are again modeled

using a softmax function with an inverse-temperature parameter λtest
k .

For responses in the podium task, the probability of selecting a podium was similarly

defined via a softmax choice function over the posterior distribution for the corresponding

model, with a separate inverse-temperature parameter λpod
k .

Parameter estimation. Parameters were estimated using Markov Chain Monte

Carlo (MCMC) with the PyMC Python library (Salvatier et al., 2016). Parameters were

estimated separately for the learning and test phases. For both models we used four

MCMC chains with 20,000 samples and 2,000 burn-in iterations. All estimates converged

as indicated by Gelmin-Rubin ratios under 1.05.
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Mean difference [95% HDI]

Age Memory load Comparison Active learning phase Test phase

5 High PERM - RAND -.36 [-.93, .23] -.48 [-.82, -.13] *

CA - RAND -.60 [-.92, -.26] * -.47 [-.79, -.12] *

CA - PERM -.24 [-.60, .06] .02 [-.34, .37]

Low PERM - RAND .40 [-.16, .96] -.19 [-.70, .38]

CA - RAND -.18 [-.52, .13] -.38 [-.75, .03]

CA - PERM -.57 [-.96, -.18] * -.19 [-.61, .26]

6 High PERM - RAND .67 [.20, .99] * -.32 [-.70, .09]

CA - RAND -.07 [-.35, .18] -.20 [-.66, .28]

CA - PERM -.73 [-.99, -.42] * .13 [-.32, .58]

Low PERM - RAND .26 [-.32, .81] .30 [-.06, .65]

CA - RAND -.25 [-.58, .11] -.10 [-.38, .18]

CA - PERM -.51 [-.86, -.14] * -.40 [-.76, .01]

7 High PERM - RAND .51 [.04, .95] * -.14 [-.61, .45]

CA - RAND .07 [-.32, .48] -.18 [-.61, .38]

CA - PERM -.43 [-.94, .13] -.03 [-.48, .36]

Low PERM - RAND .73 [.39, .99] * .05 [-.21, .34]

CA - RAND -.04 [-.28, .17] .41 [.12, .70] *

CA - PERM -.77 [-.99, -.50] * .36 [-.03, .73]

Table S1

Pairwise differences between mixture probabilities θ for each strategy in the active learning

and test phases. Differences where 95% HDIs do not overlap with 0 are marked with an

asterisk (*).


